

USER MANUAL CISWORKS GmbH & Co. KG

ViPE

CISWORKS GMBH & CO. KG

User Manual

Text, illustrations and equipment data were compiled with the utmost care. However, no liability can be assumed for any remaining inaccurate data and their consequences.

All rights reserved. No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to, photocopy, microfilm or other methods, without the written permission of CISWORKS GmbH & Co. KG.

LabVIEW, VeriStand, Windows, Microsoft, etc. are registered trademarks and property of their respective owners and are not specifically identified.

© CISWORKS GmbH & Co. KG Hans-Liebherr-Str. 18 88161 Lindenberg Deutschland Phone 0049 08381 88983-70 • Fax 0049 08381 88983-71

Table of Contents

TABLE OF CONTENTS	I
ABOUT THIS MANUAL	1
VIPE	2
Concept	2
Installation	2
Licensing	3
Requirements Resolution	5
Project Manager	6
Sequence Editor	8
Menu	9
File	9
Execution	9
Project	9
Global Sequences	
Other	
Help	
Toolbar	
Overview	
Variable manager	
TDMS Viewer	
Stimulus Editor	14
Block Diagram	14
Palette	15
Buttons	15
Function Blocks	
Control	
If Structure	
If Structure End	
For Loop	
For Loop End	
While Loop	20
While Loop End	20
Channel Assignment	21
Ramp	21
Constant	
Formula	23
Function Generator	24
Mulitasking	25
Multitask	25

Sync	25
Subtask End	26
Multitask End	26
Timing	26
Wait	26
Wait Until	26
Wait Until End	27
Data Recording	28
Data Recording	28
Data Recording Pause	29
Data Recording Resume	29
Data Recording End	29
Limit Monitoring	
Limit Monitoring	
Limit Monitoring End	
Subsequences	
Subsequence	
Stop Sequence	32
Stimulus File	
Stimulus File	
Stimulus File Pause	34
Stimulus File Resume	34
Stimulus File End	34
Favorites	
System status	35
Remote Control	36
Basic Functionality	
Commands	
LabVIEW Example	

Chapter

About this manual

His manual describes the graphical real-time sequencer **CISWORKS ViPE**. The **CISWORKS ViPE** is an abstraction layer for NI VeriStand real-time sequences. It allows users to create real-time sequences without the need for profound programming skills by selecting a graphical representation for the syntax.

со	NVENTIONS
×	Warning
	Important NOTE

Conventions – In this manual the following conventions are used for visualization to indicate hints and dangers. Function Blocks are displayed in italics (see *Formula*).

Chapter

ViPE

Visual Programming Editor.

Concept

The problem of the second programming experience. The problem of the second programming experience.

During the execution, the operator can see at which point the sequence is present. It is also possible to integrate and parameterize sequences as sub-sequences created in the NI VeriStand Stimulus Profile Editor.

Installation

he installation is similar to other Windows programs. Start the installation program and follow the on-screen instructions.

The **CISWORKS ViPE** is only used to automate an existing VeriStand project. Before installing the **CISWORKS ViPE**, you must have installed **NI VeriStand**. The **ViPE** only works in combination with the VeriStand versions 2014 and 2016.

Depending on the VeriStand version used, the corresponding ViPE version must be installed.

To be able to automate a VeriStand project with the **CISWORKS ViPE**, the following requirements must be fulfilled:

- 1. A VeriStand project must be created.
- In the VeriStand project, the following four Custom Devices must be attached: FileStimuli, FileStimuliRT, Sequenzer_Messung and Sequenzer State. Furthermore the Mapping has to be configured. The Custom Devices and the Mapping file have been installed with the installation of the ViPE.

To do this, proceed as follows:

- a. In the VeriStand project, select the **System Definition File** (* .nivssdf). The system explorer opens.
- b. In the System Explorer, you can find the Custom Devices under MyProjectName/Targets/Controller.
 Right-click on Custom Devices and select FileStimuli, FileStimuliRT, Sequenzer_Messung and Sequenzer State.

3. The VeriStand project (* .nivssdf) must be deployed.

Licensing

hen you start the **CISWORKS ViPE** for the first time, you will be informed that you are using a 30-day trial version. Before this period has elapsed, you must activate the **CISWORKS ViPE** to continue using the program. In the trial version, as well as in the activated version, the full range of functions is available. To begin with the activation process you have to start the **CISWORKS License Manager**. The **CISWORKS License Manager** is a seperate program, which has been installed with the **CISWORKS ViPE**. After that you have to go through four minor steps to complete the activation.

1	CISWORKS Software Licensing	Unique Computer ID	
1. Enter License Number	License Number	Computer ID 8E68 7A58 5BE2 D86B 36C6 8930	Language English 💌
2. Select Software 3. Create Activation Request 4. Enter Activation Code	Software 2. VIPE Activation Request 3. Create Activation Code 4. Activate	Activation Status Trial Status Invalid 44	Status Info g license file could not be read. contact CISWORKS. fo@cisworks.de 9 8381 88983-70 Quit

- 1. Please enter the received **license number** in the corresponding window at the top left.
- 2. Select the **software** you would like to activate.
- 3. Click on 🔽 Create

This will create an **email** in your local client that contains all the information we need to generate an activation code. Please hit send now.

If you do not have a local client configured, send an email to <u>activate@cisworks.de</u> with your license number as the subject and your Computer ID and the software's name in the body.

Your Computer ID is located at the top of the **CISWORKS License Manager**. Due to the uniqueness of the Computer ID, the activation code you will receive will only be valid for this same computer. If you would like to activate the software on multiple computers, you will need to retrieve the computer ID from each machine on which you would like the software to run.

4. You will receive the **activation code** within two business days. Enter this code in the corresponding window and press **Activate**

You have successfully activated the software.

^{2 -} CISWORKS License Manager

Requirements

Resolution

The following resolutions have been successfully tested:

- 1920 x 1080
- 1680 x 1050
- 1600 x 900
- 1280 x 1024

These resolutions can lead to problems:

- 1280 x 800
- 1280 x 720
- 1024 x 768
- 800 x 600
- 640 x 480

Project Manager

fter the start of the **CISWORKS ViPE**, the project manager appears. This project manager is used for managing projects and linking **CISWORKS ViPE** and NI VeriStand.

ViPF -		- Project Mana	ger	
<u></u>	C:\Users\Public\Docum	ents\ViPE		
Existin	g Projects and Sequences			
Sinev	Projects rave Delay	rt_sequenz.rtcfg	Sequences	
g projects in ected directory			<u></u>	
			Sequ	ences of the
				_
Projec	t - Information		Click OK to for a project	go to the sequence end selected at the top le
Definit	ion File C:\Users\Public\Document	\NI VeriStand 2014\Projects\Exam	ole\Sinewave Delay.nivssdf	
			/	

3 - ViPE Project Manager

Creating a project in **CISWORKS ViPE** is a necessary step to create and run real-time sequences. Individual sequences must always be assigned to a project.

To create a new project, click **New** in the lower left corner of the project manager. The following dialog opens.

	Project Manager	
	ViPE - Project Manager	
	ViPE - Project Directory	
	C:\Users\Public\Documents\ViPE	
	New Project	
	Project Name Sinewave Delay] .
	System Definition File	
	C:\Users\Public\Documents\National Instruments\NI VeriStand 2014\Projects\Example\Sinewave Delay.nivssdf	וו
The *.nivssdf file of the desired VeriStand project must be selected here. This links	d	
the VeriStand project to the ViPE project.		
	OK Cancel	

4 - ViPE Project Manager New Project

Sequence Editor

he sequence editor consists of five different parts and provides the functionality required to create and edit sequences.

5 - ViPE Sequence Editor

Menu

he menu is used for general control and administration of sequences and projects. It is divided into the six sub-items: File, Execution, Project, Global Sequences, Other and Help.

The functionality of the menu is explained in more detail below.

FILE

New	Create a new file
Open	Open an existing file
Add to the project	Add current sequence to any project
Save	Save current file
Save as	Save current file to any directory
Exit	Exit ViPE

EXECUTION

Compile	Compile sequence
Run	Start sequence
Pause	Pause sequence
Stop	Stop sequence

PROJECT

New	Create new project
Open	Open existing project
Save	Save current project
Save as	Save current project to any directory

GLOBAL SEQUENCES

The intention of global stop and alarm sequences is the protection of the devices. If sequences are interrupted or certain limit values are exceeded, a controlled termination or shutdown should be carried out in order not to damage any devices.

Configure Global Stop Sequences	Open the global Configure Stop Sequences window
Configure Global Alarm Sequences	Open the global Configure Alarm Sequences window
Save Stop Sequence	Saves the current sequence as a global stop sequence
Save Alarm Sequence	Saves the current sequence as a global alarm sequence
Global stop	and alarm sequences must be saved in the default

directory in order to select them later.

Open Stop Sequence	Open existing stop sequence
Open Alarm Sequence	Open existing alarm sequence

The scope of Pre 1, Pre 2, Post 1 and Post 2 Stop Sequences is global. This means that these sequences are executed before and after all local Stop Sequences. Running Order sequence: Pre 1 - Pre 2 - local Stop Sequence - Post 1 - Post 2.

The execution of global Alarm Sequences depends on the selected Limit Monitoring Mode. Depending on the mode either none, Pre 1 and Pre 2 or all Global Alarm Sequences are executed together with the local Alarm Sequence. (see Limit Monitoring)

OTHER

Language English oder german

Shortcuts List of available shortcuts

HELP

Manual	Detailed user manual
Training Videos	Youtube links

Toolbar

o control and work with the **CISWORKS ViPE**, a series of buttons are used to support the user in his or her request. These buttons are presented with self-explaining icons, which provide the most important functions directly.

OVERVIEW

Create a new sequence

Open an existing sequence

Open file

Save current sequence

File – Save as

Save current sequence under a specific path

5	Undo	Undo the last action
	Redo	Restore an undo action
	Start Sequence	
н.	Pause Sequence	
0	Stop Sequence	
A.	View follows sequence execution	Focus on the currently executed step of a running sequence
	Variable Manager	Create and edit local variables
	TDMS Viewer	View TDMS-Files
>>	Stimulus File Editor	Create Stimulus File and save as a *.csv file
Ē.	Status Info	Status information about the running sequence
	Show/Hide Palette	

The toolbar functions **Variable Manager**, **TDMS Viewer** and **Stimulus Editor** are explained in more detail below.

VARIABLE MANAGER

💽 Variable Manager					23
Name		Default Value	Description	Unit	Type 🔺
Local Variables			-		
number		0,000000		ms	Double
					Ŧ
Name	Default Value	Туре	Description	Unit	Createring
number	0	Double 💌		ms	Create var
Error					OK
		•			cuncel

6 - ViPE Variable Manager

With the help of the variable manager local variables can be created and provided with a default value as well as a unit. Local variables can be accessed from function blocks.

Local variables have a local scope, which means that they can only be used in the sequence in which they were created. In addition, the name of a variable must be unique and must not contain any of the following characters: ____,-;:!/

TDMS VIEWER

Recorded data is stored in TDMS format. With the TDMS Viewer, these files can be opened and viewed as graphs.

To do this, you have to move the desired TDMS file from the *Select TDMS Files* menu into the right window.

Afterwards, you switch to the *View File Contents* menu and draw the desired measurement criterion from the right side into the graph.

STIMULUS EDITOR

In the **stimulus editor**, curves can be generated and saved as a CSV file for further use. The frequency, amplitude, and offset parameters specify the waveform of the curve. File length and target rate specify the number of points. There are three types of curves available: sine, rectangle and noise.

Note that the target rate of the generated curves must match the target rate of the VeriStand target.

Block Diagram

raphical representation of the sequence, as in a flowchart. The function blocks of the pallet can be dragged into the block diagram. The data flow moves from top to bottom. During execution, the user can see which block of the sequence is currently executed.

7 – ViPE Block Diagram

Palette

In unction blocks can be easily added to the block diagram by drag & drop. In the subsequent configuration window, this block can be specifically configured according to its function. In addition to basic sequence control functions, the palette also provides functionality to capture measurement data and to define alarm sequences that are executed when limits are exceeded.

BUTTONS

In some function blocks mathematical functionality is provided by buttons. The use of these buttons is explained in more detail below.

(Round brackets	Function parameters are enclosed with round brackets
)		
[Square brackets	Variables, channels and aliases are enclosed with square brackets
]		
=	Assignment	Assignment operator
>	Greater than	Relational operator
<	Less than	Relational operator
>=	Greather than or equal to	Relational operator
<=	Less than or equal to	Relational operator

	Or	Logical or operation
&&	And	Logical and operation
==	Equal to	Relational operator
!=	Not equal to	Relational operator
sin	Sine	Use: $sin(x)$ with $x =$ angle in degree
cos	Cosine	Use: $cos(x)$ with $x = angle$ in degree
tan	Tangent	Use: $tan(x)$ with $x =$ angle in degree
sqrt	Root	sqrt(x) returns square root of x
exp	Exponential function	Exponential funktion with the constant e as base Use: $exp(x)$ with x as exponent
pow	Exponentiation	Use: pow(x,y) with x as base and y as exponent
log	Logarithm	Use: $log(x,y)$ with y as base
In	Natural logarithm	Logarithm with base e, Use: $ln(x)$ with $x = exp(ln(x))$
isnan	IsNotANumber	Returns TRUE if the value is not a number
abs	Absolute	abs(x) returns absolute value of x
acos	Arccosine	Use: $acos(x)$ with x between -1 and 1 returns angle in radian

asin	Arcsine	Use: $acos(x)$ with x l -1 and 1 returns angle in radian	between
atan	Arctangent	Use: atan(x) returns angle in radian	
mod	Modulo	Use: $mod(x,y)$ returns rest of $x \div y$	
rand	Random number	Use: rand(x) returns random number 1 0 and x	between
sign	Sign	Use: sign(x) returns 1 with $x > 0$, -1 with 0 with $x = 0$	x < 0,

FUNCTION BLOCKS

Control

🔶 If Structure

After an *If Structure* is drawn into the block diagram, the configuration window, in which a condition can be defined, opens.

Local variables, VeriStand channels, or VeriStand aliases can be used to define the condition. You can use the search function to find specific variables, channels and aliases. To set or edit the condition, you can use the numeric or operator buttons as well as the keyboard.

When executing the sequence, the condition is checked. At a branch, either the true path or false path is executed depending on whether the condition is met or not.

An *If Structure* must always end with an *If Structure End*. If you have accidentally removed the *If Structure End* block, you can readd it by simply dragging the *If Structure End* to the block diagram.

The content of a *For Loop* is repeated a certain number of iterations. The number of iterations is set to 12 in the example below.

For Loop
Iterations 12
OK Cancel

10 – ViPE For Loop

A For Loop must always end with a For Loop End. If you have accidentally removed the For Loop End block, you can readd it by simply dragging the For Loop End to the block diagram.

🖸 While Loop

The content of a *While Loop* is repeated as long as a defined condition is met. If the condition is never false, *the While* Loop never stops.

A *While Loop* must always end with a *While Loop End*. If you have accidentally removed the *While Loop End* block, you can readd it by simply dragging the *While Loop End* to the block diagram.

Channel Assignment

The value of a channel to be selected changes linearly within a time span from a start to a stop value. It is possible to specify the duration as well as start and stop value numerically or to map these to a channel. Channels and aliases can be used as channels. Furthermore, you can set the starting value absolute or relative. A relative start value means that the current value of the channel is the start value.

12 - ViPE Configuration Window Ramp

A specific value can be assigned to each channel. These values are taken directly when the constant function is executed. Duration specifies the time how long the system waits until the function is terminated.

Constant	×
Constant	
	Search 📔 🗛
 Targets Targets Toroller ? User Channels ? System Channels Simulation Models Models Models Sequencer State Sequencer_Messung 	-
	*
Channel Targets/Controller/User Channels/User Channel 4	
Value	0 6 6
	Duration 0
Targets/Controller/User Channels/User Channel 3 = 5,000	^ ^
rages, contonel, osci channels, osci channel s = 3,000	
	Waiting time until block is finished.
	-
	OK Cancel

13 - ViPE Configuration Window Constant

f(x) Formula

A **Formula** can be applied in many ways. The values of variables, channels or aliases can be manipulated with the help of operators and functions.

14 - ViPE Configuration Window Formula

Functions can be assigned to channels. There are four types of functions available:

Sinusoid, Sawtooth, PWM (Pulse-width modulation), Triangle

The following settings can be made for each function:

Amplitude	Maximum deflection in the y-direction (positive and negative range) from the x-axis
Bias	Offset which is added to y. x-axis is set to $y = 0$ by default
Frequency	Speed of successive repetitions in Hertz
Phase	Start position of the function in angle (degree)
Duration	Duration of the function in seconds
Duty Cycle	Ratio of <i>Amplitude - Bias</i> to <i>Amplitude + Bias</i> as a percentage (only relevant for PWM)

Function Generator							×	
		Fun	ction Gene	rator				
					Searc	h	R A	
🖃 👰 Targets								
🖃 💷 Controller							=	
🖃 🎲 User Channels	_							
4 User Channe	0							
4 User Channel	1							
User Channel	2							
La User Channel	4							
4 User Channel	5							
4 User Channe	6							
կ 🎖 User Channel	7							
4 User Channel	8							
4 User Channel	9							
L User Channel	10							
4: User Channel	12							
La User Channel	13						*	
Function Type — Sinusoi	d 💌							
Channel Targets	/Controller/Us	er Channels/Us	er Channel	7				
					4			
Amplitude					1		<i>i</i> o <i>i</i> o	
Bias					0		R B	
Frequency (Hz)					1		8	
Phase (°)					0		8	
Duration (s)					20		<u>~</u>	
Duty Curls					0			
Duty Cycle					U			
						l		
Signal	Туре	Amplitude	Bias	Frequency (Hz)	Phase (°) Du	ration (s)	Duty Cycle 🔺	
Targets/Controller/User Ch	ar Sinusoid	1,000	0,000	1,000	0,000 20,0	00	0,000	
								15 VIDE
								15 - V1PE
								Configuration
							-	Window
						OK	Cancel	Function

Mulitasking

Up to 8 instruction blocks can be executed in parallel in so-called tasks.

Within Multitask blocks, the sync function can be used to specify that all tasks must first have reached the Symc block before subsequent function blocks can be executed. In the example below, Constant in Task2 is not executed until the For Loop block in Task1 is terminated.

17 - ViPE Sync

Within a multitask block, a task can be terminated from another task.

Multitask	Task 1		Task 2		
	For Loop	100x	if Structure	True	False
		f(x) Formula		End: Task_1	f(x) Formula
	For Loop End		If Structure End		
Multitask End					
				18 – ViPE	Subtask End

Multitask End

A *Multitask* must always end with a *Multitask End*. If you have accidentally removed the *Multitask End* block, you can readd it by simply dragging the *Multitask End* to the block diagram.

Timing

🕞 Wait

Waiting for a certain amount of time. The lower block waits for 10 seconds until the next function block is executed.

💽 Wait	×
W	/ait 10 [s]
	Time to Wait [ms] 10000
	OK Cancel
	OK Cancel

19 – ViPE Wait

Wait until a defined condition is met. It is possible to define a timeout, which terminates the function after a certain time, if the condition is not met.

If a timeout is set in the *Wait Until* block to, a branch in Standard and Timeout results. This branch must always be completed by *Wait Until End*. If the condition occurs within the defined period, the block is executed within Standard. If this condition does not occur within the defined time period, the timeout occurs, and then the block is executed within the Timeout.

20 - ViPE Wait Until End

Data Recording

Values of variables, channels and aliases can be recorded and saved in a TDMS file. TDMS is a data format of National Instruments, which can be opened directly with the TDMS viewer in **CISWORKS ViPE**. The channels to be recorded are added by doubleclicking.

Configuration options

Duration Duration [s] = 0 means, that recording runs until End block is met or the sequence is terminated

Rate	recording frequency in hertz
------	------------------------------

Indexing If *Data Recording* is repeatedly called within a *For Loop* or a *While Loop* and the checkmark is set, a new file is created with a consecutive number appended to the recording file name.

Recording modes

Direct	Recording starts immediately with the set frequency
Trigger	Recording starts only when the trigger condition is met. A trigger condition can be defined for a channel or for an alias. The following operators are available: > (larger), > = (greater than), <(smaller), <= (less than), == (equal), - $ $ - (open interval), $ $ (completed interval)
Cyclic	Data is recorded for the period of the value specified in the measurement period. The data recording is then interrupted for the period of the value specified in the cycle time. This process is

repeated for the duration of the data recording.

Data Recording Pause

The data recording is interrupted.

Data Recording Resume

An interrupted data recording is resumed.

Data Recording End

The data recording is ended.

Data Recording Pause and Data Recording End are not real-time. This means that after the execution of these blocks further data can be recorded for several milliseconds.

Limit Monitoring

A limit condition can be defined. If the condition is met, a selected alarm sequence is started.

Note that alarm sequences need to be saved in the designated folder (...\Sequences\Alarm Sequences). Only then can these be selected.

There are four different modes for executing this alarm sequence:

Continuous	Whenever the limit condition is met, the Alarm Sequence is called. After the Alarm Sequence has been processed, the current sequence continues. No Global Alarm Sequences are called before and after the Alarm Sequence.
	Pre 1 -> Pre 2 -> Alarm Sequenz -> Post 1 -> Post 2
Single	The Alarm Sequence is only called upon the first time the limit condition is met. After the Alarm Sequence has been processed, the current sequence continues, even if the limit condition is met another time. No Global Alarm sequences are called before and after the Alarm Sequence.
	Pre 1 -> Pre 2 -> Alarm Sequenz -> Post 1 -> Post 2
Stop Sequence	After the Alarm Sequence has been processed, the sequence is aborted. The two Global Alarm Sequences Pre Alarm 1 & 2 are called before this Alarm Sequence.
	Pre 1 -> Pre 2 -> Alarm Sequenz -> Post 1 -> Post 2
Pause Sequence	After the alarm sequence has been processed, the sequence is paused. The sequence must be continued manually by the user. Before and after this Alarm Sequence all Global Alarm Sequences are called.
	Pre 1 -> Pre 2 -> Alarm Sequenz -> Post 1 -> Post 2

22 - ViPE Configuration Window Limit Monitoring

Limit Monitoring End

Terminates an active limit monitoring. If there are more than one limit monitorings active, you can select the one to terminate.

Subsequences

An existing sequence can be integrated into the current sequence as a subsequence. Not only CISWORKS ViPE sequences (*.rtcfg) can be called but also VeriStand sequences (*.nivsseq).

A **Stop Sequence** can be included at any point in the current sequence. This stop sequence is only executed if the current running sequence is aborted manually by the user.

If a subsequence is included in a sequence with a stop sequence in which another stop sequence is defined, the stop sequence from the calling sequence is executed in the event of an abort.

Stimulus File

🛔 Stimulus File

As Stimulus Files, you can load files (*.txt, *.csv, *.dsv) that were previously created in the Stimulus Editor. The values of the FileStimuli can be accessed in the VeriStand channels under Custom Devices/FileStimuliRT/Output. The access to the values of the individual columns is made via the following VeriStand channels (all channels under Custom Devices/FileStimuliRT/Output):

Stimulus File	1st column	2nd column	3rd column	4th column	
VeriStand channel	Elapsed_Time[s]	Out0	Out1	Out2	

The following example shows a **Stimulus File** (*.csv) with three curves: Column B = **Sine** (Frequency = 1, Amplitude = 1, Offset = 0) Column C = **Rectangle** (Frequency = 1, Amplitude = 1, Offset = 0) Column D = **Noise** (Frequency = 1, Amplitude = 1, Offset = 0)

Target Rate = 100 Hz
=> every 10 ms one point

4			6	5	
	A	В	C	U 🗲	4th column = Out2
1	0.000	0.000	1.000	-3.395	
2	0.010	0.063	1.000	3.029	
3	0.020	0.125	1.000	3.975	
4	0.030	0.187	1.000	-24.979	
5	0.040	0.249	1.000	-1.518	
6	0.050	0.309	1.000	-7.481	
7	0.060	0.368	1.000	25.645	
8	0.070	0.426	1.000	28.757	
9	0.080	0.482	1.000	-12.404	
10	0.090	0.536	1.000	27.269	
11	0.100	0.588	1.000	-7.813	
12	0.110	0.637	1.000	-8.566	
13	0.120	0.685	1.000	3.833	
14	0.130	0.729	1.000	-11.347	
15	0.140	0.771	1.000	1.039	
16	0.150	0.809	1.000	17.938	
17	0.160	0.844	1.000	9.522	
18	0.170	0.876	1.000	-5.527	
19	0.180	0.905	1.000	-23.989	
20	0.190	0.930	1.000	-2.240	
21	0.200	0.951	1.000	-1.764	
22	0.210	0.969	1.000	11.844	
23	0.220	0.982	1.000	45.221	23 – Stimulus File
		1	†		
	/				
	2nd column	= Out0	3rd colun	nn = Out1	

The processing of a *Stimulus File* takes place after a waiting time of 2 seconds in the background of a sequence. The values are read for the duration specified in the stimulus file. However, the start and stop position can also be set manually. If the execution of the sequence is terminated, the reading of the stimulus file also ends. The reading of the values can be manipulated with the following function blocks.

Stimulus File Pause

Interrupt the reading in of the stimulus file.

```
Mi Stimulus File Resume
```

Resume the reading in of the interrupted stimulus file.

Stimulus File End

Terminate the reading in of the stimulus file.

			Edit Category	
		Add Category	Delete Category	y
Favorites	Favorites Manage			
Blockname must	Category	Recording		
	Block Name	Measurement		
	Icon Path	O:\Icons\Icons_v02\ni_IsMeasurement.png		
	Display: Ico	m + Block Name		
		Save Block	Cancel	

24 - ViPE Favorites Manager

If the configuration of a block is used more than once, it can be stored as a favorite. To do this, right-click on the desired Function Block in the Block Diagram to select the "Add to Favorites" sub-point. The favorite can be added to a category and assigned with an icon. A unique block name must be chosen. If a favorite is created, it is added to the palette.

System status

The system status provides information about the current status of the sequence.

Running	Running : The sequence is currently running and cannot be edited during this time. You can follow the current step of execution in the block diagram.
Activate A in focus.	utoscroll to always keep the current step of exection
Idle	Idle: The sequence is not active and can be edited.
Paused	Paused : Execution of the sequence is paused. Press pause again to resume execution of the sequence.

Remote Control

n order to be able to remotely control the **CISWORKS ViPE** via TCP protocol, the **CISWORKS ViPE** must be provided with the appropriate parameters at startup. To do this, the **ViPE** must be started using the Windows console as follows:

<Path to CISWORKS ViPE.exe> Sequenzer/t"LabView-Remote" /d"<Path VeriStand System Definition File (.nivssdf)>" /p"<Path to ViPE project (.vipeprj)" /m"Menu"

Example

C:\>C:\Program Files (x86)\CISWORKS\VIPE\ViPE.exe Sequenzer/t"LabView-Remote" /d "C:\Projekte\Testprojekt\Testprojekt.nivssdf" /p"C:\Vsers\Public\Documents\ViPE\ Testprojekt\Testprojekt.vipeprj" /m"Menu"

A TCP listener waits in the background for incoming connections. A TCP connection can be established by means of the IP address of the computer running the **CISWORKS ViPE** and the service name "LocalSequencePort".

Basic Functionality

If a TCP connection is established, two messages must be sent to the remote interface to execute a command. The first message must contain the length of the second message as a binary string. The second message contains the command and any parameters. The remote interface also expects the second message as a binary string. This binary string is converted to a cluster in the remote interface. The cluster consists of a string and a variant data type. The string represents the command and the variant represents the corresponding parameter. Parameters can be integers and paths.

Commands

Exit	Terminates ViPE, no parameter		
SequenzerWindow	Maximizes ViPE window if Hidden or vice versa, no parameter		
SequenzOpen	Opens a sequence, path of the sequence as parameter		
ProjektOpen	Opens a project, path oft he project as parameter		
ProjektNeu Creates a new project, no parameter			
SequenzStart	Starts current sequence, no parameter		
SequenzStop Stops current running sequence, no parameter			
SequenzPause Pauses current running sequence, no parameter			
Setze_Messpfad	Sets the measuring path, path oft he measurement file as parameter		
Status	Writes current status via TCP Write to the TCP connection, does not expect any parameters. A binary string is obtained which can be converted into a cluster consisting of a string and a variant. The variant can be converted to a cluster. This cluster consists of an integer, another cluster consisting of many paths, and a further path. The image below shows the data format of the status in LabVIEW.		

The following example shows the sending of the remote command: "SequenceOpen" in LabVIEW.

In the example, a TCP connection to the remote interface is established using the LabVIEW VI **TCP Open Connection**. The "SequenceOpen" command is processed together with the path converted into a variant data type as a cluster. This cluster is converted to a binary string. The length of this string is sent to the remote interface via TCP Write in the first message. The actual content is sent in the second message via TCP Write too.